SONY

ICX098BQ

Diagonal 4.5mm (Type 1/4) Progressive Scan CCD Image Sensor with Square Pixel for Color Cameras

Description

The ICX098BQ is a diagonal 4.5mm (Type 1/4) interline CCD solid-state image sensor with a square pixel array which supports VGA format. Progressive scan allows all pixels signals to be output independently within approximately 1/30 second. Also, the adoption of monitoring mode allows output to an NTSC monitor without passing through the memory. This chip features an electronic shutter with variable charge-storage time which makes it possible to realize full-frame still image without a mechanical shutter. High resolution and high color reproductivity are achieved through the use of R, G, B primary color mosaic filters. Further, high sensitivity and low dark current are achieved through the adoption of HAD (Hole-Accumulation Diode) sensors.

This chip is suitable for applications such as electronic still cameras, PC input cameras, etc.

- Progressive scan allows individual readout of the image signals from all pixels.
- High horizontal and vertical resolution (both approx. 400TV-lines) still image without a mechanical shutter.
- · Supports monitoring mode
- · Square pixel
- Supports VGA format
- Horizontal drive frequency: 12.27MHz
- No voltage adjustments (reset gate and substrate bias are not adjusted.)
- R, G, B primary color mosaic filters on chip
- High resolution, high color reproductivity, high sensitivity, low dark current
- · Continuous variable-speed shutter
- · Low smear
- · Excellent antiblooming characteristics
- Horizontal register: 3.3V drive
- 14-pin high precision plastic package (enables dual-surface standard)

Device Structure

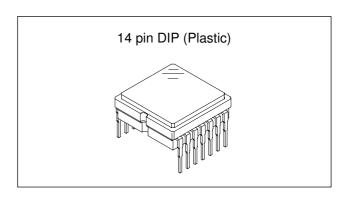
· Interline CCD image sensor

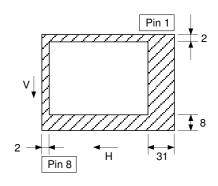
• Image size: Diagonal 4.5mm (Type 1/4)

Number of effective pixels:
 Total number of pixels:
 659 (H) × 494 (V) approx. 330K pixels
 692 (H) × 504 (V) approx. 350K pixels

• Chip size: 4.60mm (H) \times 3.97mm (V) • Unit cell size: 5.6 μ m (H) \times 5.6 μ m (V)

Optical black: Horizontal (H) direction: Front 2 pixels, rear 31 pixels
 Vertical (V) direction: Front 8 pixels, rear 2 pixels

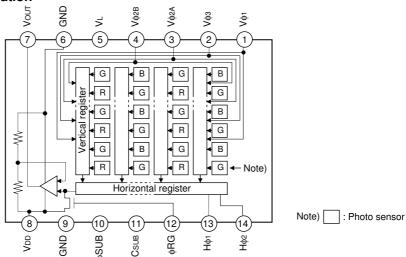

Number of dummy bits: Horizontal 16


• Substrate material: Vertical 5
• Silicon

Wfine **CCD**®

* Wfine CCD is a registered trademark of Sony Corporation. Represents a CCD adopting progressive scan, primary color filter and square pixel.

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.



Optical black position (Top View)

Block Diagram and Pin Configuration

(Top View)

Pin Description

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	V φ1	Vertical register transfer clock	8	VDD	Supply voltage
2	Vфз	Vertical register transfer clock	9	GND	GND
3	V ф2A	Vertical register transfer clock	10	φSUB	Substrate clock
4	V ф2В	Vertical register transfer clock	11	Сѕив	Substrate bias*1
5	VL	Protective transistor bias	12	φRG	Reset gate clock
6	GND	GND	13	Нф1	Horizontal register transfer clock
7	Vout	Signal output	14	Нф2	Horizontal register transfer clock

^{*1} DC bias is generated within the CCD, so that this pin should be grounded externally through a capacitance of $0.1\mu F$.

Absolute Maximum Ratings

	Item	Ratings	Unit	Remarks
	Vdd, Vout, φRG – φSUB	-40 to +10	V	
	V _{\$\phi_2A\$} , V _{\$\phi_2B} - \$\phi_SUB\$	-50 to +15	V	
Against	$V\phi_1, V\phi_3, V_L - \phi SUB$	-50 to +0.3	V	
	Hφ1, Hφ2, GND – φSUB	-40 to +0.3	V	
	Csuв — фSUB	–25 to	V	
	Vdd, Vout, фRG, Csuв – GND	-0.3 to +18	V	
Against GND	Vφ1, Vφ2A, Vφ2B, Vφ3 – GND	-10 to +18	V	
	Hφ1, Hφ2 – GND	-10 to +5	V	
Against V∟	Vф2A, Vф2B – VL	-0.3 to +28	V	
	$V_{\varphi 1},V_{\varphi 3},H_{\varphi 1},H_{\varphi 2},GND-V_{L}$	−0.3 to +15	V	
	Voltage difference between vertical clock input pins	to +15	V	*2
Between input clock pins	Hφ1 – Hφ2	−5 to +5	V	
	$H\phi_1, H\phi_2 - V\phi_3$	-13 to +13	V	
Storage tempe	rature	−30 to +80	°C	
Operating temp	perature	-10 to +60	°C	

 $^{^{*2}}$ +24V (Max.) when clock width < 10 μ s, clock duty factor < 0.1%.

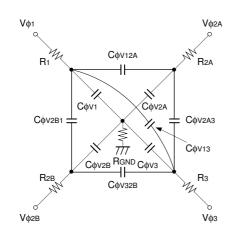
Bias Conditions

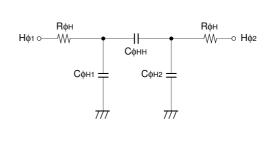
Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Supply voltage	VDD	14.55	15.0	15.45	V	
Protective transistor bias	VL	*1				
Substrate clock	φSUB		*2			
Reset gate clock	φRG		*2			

^{*1} VL setting is the VvL voltage of the vertical transfer clock waveform, or the same power supply as the VL power supply for the V driver should be used.

DC Characteristics

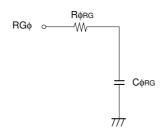
Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Supply current	IDD		6.0		mA	


Clock Voltage Conditions


Item	Symbol	Min.	Тур.	Max.	Unit	Waveform diagram	Remarks
Readout clock voltage	VvT	14.55	15.0	15.45	V	1	
	VvH02A	-0.05	0	0.05	V	2	Vvh = Vvh02A
	Vvh1, Vvh2A, Vvh2B, Vvh3	-0.2	0	0.05	V	2	
	Vvl1, Vvl2A, Vvl2B, Vvl3	-5.8	-5.5	-5.2	V	2	$V_{VL} = (V_{VL1} + V_{VL3})/2$
Vertical transfer clock voltage	Vφ1, Vφ2A, Vφ2B, Vφ3	5.2	5.5	5.8	V	2	
	Vvl1 – Vvl3			0.1	٧	2	
	Vvнн			0.3	V	2	High-level coupling
	VVHL			1.0	V	2	High-level coupling
	Vvlh			0.5	V	2	Low-level coupling
	VVLL			0.5	V	2	Low-level coupling
Horizontal transfer	Vфн	3.0	3.3	5.25	V	3	
clock voltage	VHL	-0.05	0	0.05	V	3	
	VфRG	3.0	3.3	5.5	V	4	
Reset gate clock voltage	VRGLH – VRGLL			0.4	V	4	Low-level coupling
	VRGL — VRGLm			0.5	V	4	Low-level coupling
Substrate clock voltage	Vфsuв	19.75	20.5	21.25	V	5	

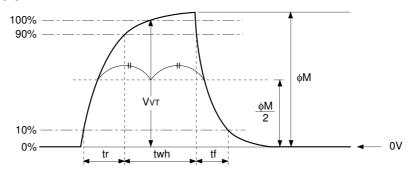
^{*2} Do not apply a DC bias to the substrate clock and reset gate clock pins, because a DC bias is generated within the CCD.

Clock Equivalent Circuit Constant


Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
	СфV1		2200		pF	
Capacitance between vertical transfer clock and GND	Сфу2А, Сфу2В		1500		pF	
	Сфvз		1000		pF	
	СфV12А, СфV2В1		390		pF	
Capacitance between vertical transfer clocks	Сфу2А3, Сфу32В		680		pF	
	СфV13		820		pF	
Capacitance between horizontal transfer clock and GND	Сфн1, Сфн2		15		pF	
Capacitance between horizontal transfer clocks	Сфнн		47		pF	
Capacitance between reset gate clock and GND	Сфяд		3		pF	
Capacitance between substrate clock and GND	Сфѕив		270		pF	
	R ₁		15		Ω	
Vertical transfer clock series resistor	R2A, R2B		100		Ω	
	R ₃		62		Ω	
Vertical transfer clock ground resistor	RGND		47		Ω	
Horizontal transfer clock series resistor	Rфн		15		Ω	
Reset gate clock series resistor	Rørg		62		Ω	

Vertical transfer clock equivalent circuit

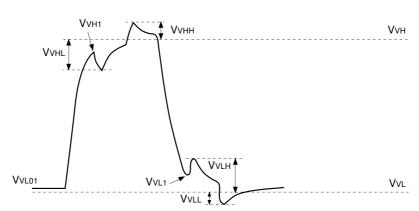
Horizontal transfer clock equivalent circuit

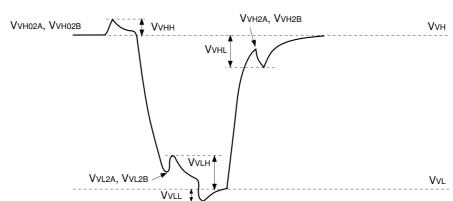


Reset gate clock equivalent circuit

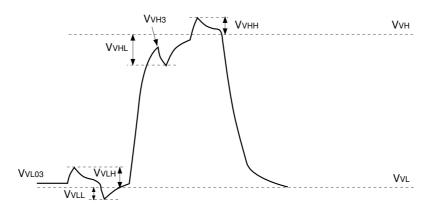
Drive Clock Waveform Conditions

(1) Readout clock waveform

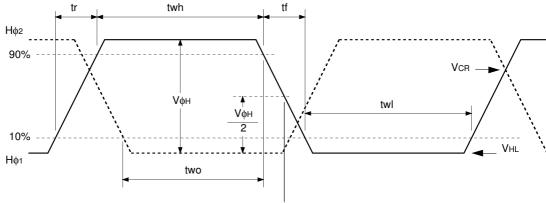

 V_{T}

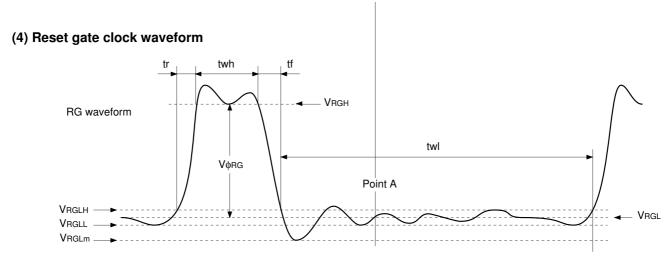

Note) Readout clock is used by composing vertical transfer clocks V_{\$\phi_2A\$} and V_{\$\phi_2B\$}.

(2) Vertical transfer clock waveform


Vф1

Vφ2A, Vφ2B


Vфз

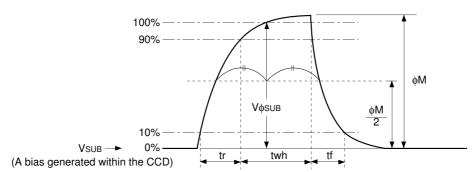

 $VVH = VVH02A \\ VVL = \left(VVL01 + VVL03\right)/2 \\ VVL3 = VVL03$

 $\begin{array}{l} V\varphi v_1 = VvH1 - VvL01 \\ V\varphi v_2 A = VvH02A - VvL2A \\ V\varphi v_2 B = VvH02B - VvL2B \\ V\varphi v_3 = VvH3 - VvL03 \end{array}$

(3) Horizontal transfer clock waveform

Cross-point voltage for the H ϕ_1 rising side of the horizontal transfer clocks H ϕ_1 and H ϕ_2 waveforms is VcR. The overlap period for twh and twl of horizontal transfer clocks H ϕ_1 and H ϕ_2 is two.

VRGLH is the maximum value and VRGLL is the minimum value of the coupling waveform during the period from Point A in the above diagram until the rising edge of RG. In addition, VRGL is the average value of VRGLH and VRGLL.


$$V_{RGL} = (V_{RGLH} + V_{RGLL})/2$$

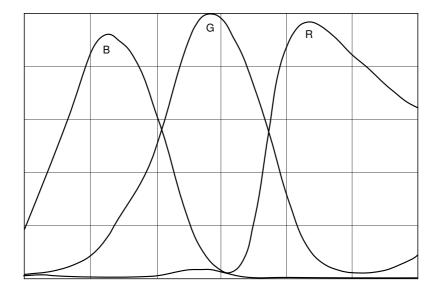
Assuming VRGH is the minimum value during the interval twh, then:

$$V \phi RG = V RGH - V RGL$$

Negative overshoot level during the falling edge of RG is VRGLm.

(5) Substrate clock waveform

Clock Switching Characteristics


	Item	Symbol		twh			twl		tr			tf		Unit	Remarks	
	цеш	Symbol	Min.	Тур.	Мах.	Offic	Remarks									
Rea	adout clock	VT	2.3	2.5						0.5			0.5		μs	During readout
Ver	tical transfer ck	V\$1, V\$2A, V\$2B, V\$3										15		350	ns	*1
상	During	Нф1	25.5	30.5		28	33			9	16.5		9	16.5	20	*2
r clock	imaging	Нф2	28	33		25.5	30.5			9	14		9	14	ns	*2
Horizontal transfer clc	During	Нф1								0.01			0.01			
Hotra	parallel-serial conversion	Нф2								0.01			0.01		μs	
Res	set gate clock	фRG	11	12			63.5			3			3		ns	
Sub	ostrate clock	фSUB	1.5	1.8							0.5			0.5	μs	During drain charge

^{*1} When vertical transfer clock driver CXD1267AN is used.

^{*2} tf \geq tr - 2ns, and the cross-point voltage (VcR) for the H ϕ 1 rising side of the H ϕ 1 and H ϕ 2 waveforms must be at least V ϕ H/2 [V].

Item	Symbol	two	Unit	Remarks	
item	Symbol	Min. Typ. Max.	Offic	nemarks	
Horizontal transfer clock	Н ф1, Н ф2	21.5 25.5	ns		

Spectral Sensitivity Characteristics (excludes lens characteristics and light source characteristics)

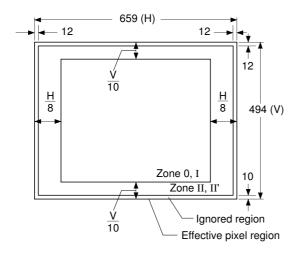
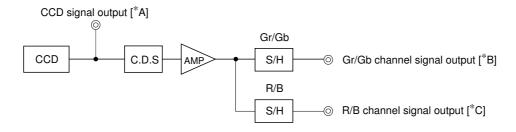
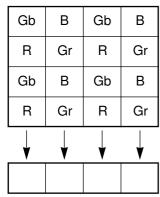


Image Sensor Characteristics


(Ta = 25°C)

Item	ltem		Min.	Тур.	Max.	Unit	Measurement method	Remarks
G sensitivity	G sensitivity		425	530		mV	1	
Sensitivity	R		0.4	0.55	0.7		1	
comparison	В	Rb	0.3	0.45	0.6		1	
Saturation signal		Vsat	500			mV	2	Ta = 60 ℃
Smear		Sm		0.0008	0.0025	%	3	
Video signal shading		CLIa			20	%	4	Zone 0 and I
video signal shading		SHg			25	%	4	Zone 0 to II'
Uniformity between video		ΔSrg			8	%	5	
signal channels		ΔSbg			8	%	5	
Dark signal		Vdt			4	mV	6	Ta = 60 ℃
Dark signal shading	Dark signal shading				1	mV	7	Ta = 60 ℃
Line crawl G		Lcg			3.8	%	8	
Line crawl R		Lcr			3.8	%	8	
Line crawl B		Lcb			3.8	%	8	
Lag		Lag			0.5	%	9	

Zone Definition of Video Signal Shading


Measurement System

Note) Adjust the amplifier gain so that the gain between [*A] and [*B], and between [*A] and [*C] equals 1.

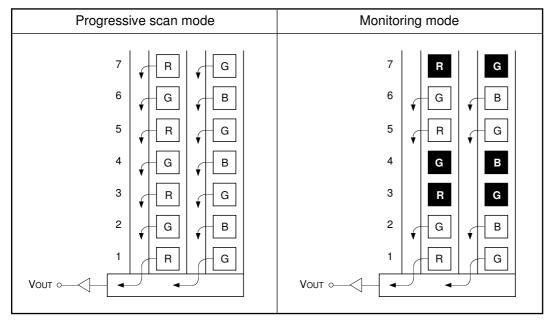
Image Sensor Characteristics Measurement Method

Color coding and readout of this image sensor

The primary color filters of this image sensor are arranged in the layout shown in the figure on the left (Bayer arrangement).

Gr and Gb denote the G signals on the same line as the R signal and the B signal, respectively.

Horizontal register


Color Coding Diagram

All pixels signals are output successively in a 1/30s period.

The R signal and Gr signal lines and the Gb signal and B signal lines are output successively.

Readout modes

The diagram below shows the output methods for the following two readout modes.

Note) Blacked out portions in the diagram indicate pixels which are not read out.

1. Progressive scan mode

In this mode, all pixel signals are output in non-interlace format in 1/30s.

The vertical resolution is approximately 400TV-lines and all pixel signals within the same exposure period are read out simultaneously, making this mode suitable for high resolution image capturing.

2. Monitoring mode

The signals for all effective areas are output during a single field period of NTSC standard (approximately 1/60s) by repeating readout pixels and non-readout pixels every two lines. The vertical resolution is approximately 200TV-lines. Note that the same pixel signal is output for both odd and even fields.

Since signals are output in a format which conforms to NTSC, the external circuit can be simplified when monitoring using an NTSC monitor.

Measurement conditions

1) In the following measurements, the device drive conditions are at the typical values of the bias and clock voltage conditions.

2) In the following measurements, spot blemishes are excluded and, unless otherwise specified, the optical black level (OB) is used as the reference for the signal output, which is taken as the value of the Gr/Gb signal output or the R/B signal output of the measurement system.

Definition of standard imaging conditions

1) Standard imaging condition I:

Use a pattern box (luminance 706cd/m^2 , color temperature of 3200K halogen source) as a subject. (Pattern for evaluation is not applicable.) Use a testing standard lens with CM500S (t = 1.0mm) as an IR cut filter and image at F5.6. The luminous intensity to the sensor receiving surface at this point is defined as the standard sensitivity testing luminous intensity.

2) Standard imaging condition II:

Image a light source (color temperature of 3200K) with a uniformity of brightness within 2% at all angles. Use a testing standard lens with CM500S (t = 1.0mm) as an IR cut filter. The luminous intensity is adjusted to the value indicated in each testing item by the lens diaphragm.

1. G sensitivity, sensitivity comparison

Set to standard imaging condition I. After selecting the electronic shutter mode with a shutter speed of 1/100s, measure the signal outputs (V_{Gr}, V_{Gb}, V_R and V_B) at the center of each Gr, Gb, R and B channel screens, and substitute the values into the following formula.

$$V_G = (V_{Gr} + V_{Gb})/2$$

$$Sg = V_G \times \frac{100}{30} \text{ [mV]}$$

$$Rr = V_R/V_G$$

$$Rb = V_B/V_G$$

2. Saturation signal

Set to standard imaging condition II. After adjusting the luminous intensity to 20 times the intensity with the average value of the Gr signal output, 150mV, measure the minimum values of the Gr, Gb, R and B signal outputs.

3. Smear

Set to standard imaging condition II. With the lens diaphragm at F5.6 to F8, first adjust the average value of the Gr signal output to 150mV. Measure the average values of the Gr signal output, Gb signal output, R signal output and B signal output (Gra, Gba, Ra, Ba), and then adjust the luminous intensity to 500 times the intensity with average value of the Gr signal output, 150mV. After the readout clock is stopped and the charge drain is executed by the electronic shutter at the respective H blankings, measure the maximum value (Vsm [mV]), independent of the Gr, Gb, R and B signal outputs, and substitute the values into the following formula.

$$Sm = Vsm \div \frac{Gra + Gba + Ra + Ba}{4} \times \frac{1}{500} \times \frac{1}{10} \times 100 \, [\%] \, (1/10V \text{ method conversion value})$$

4. Video signal shading

Set to standard imaging condition II. With the lens diaphragm at F5.6 to F8, adjust the luminous intensity so that the average value of the Gr signal output is 150mV. Then measure the maximum (Grmax [mV]) and minimum (Grmin [mV]) values of the Gr signal output and substitute the values into the following formula.

SHg =
$$(Grmax - Grmin)/150 \times 100$$
 [%]

5. Uniformity between video signal channels

After measuring 4, measure the maximum (Rmax [mV]) and minimum (Rmin [mV]) values of the R signal and the maximum (Bmax [mV]) and minimum (Bmin [mV]) values of the B signal, and substitute the values into the following formula.

$$\Delta Srg = (Rmax - Rmin)/150 \times 100 [\%]$$

$$\Delta Sbg = (Bmax - Bmin)/150 \times 100 [\%]$$

6. Dark signal

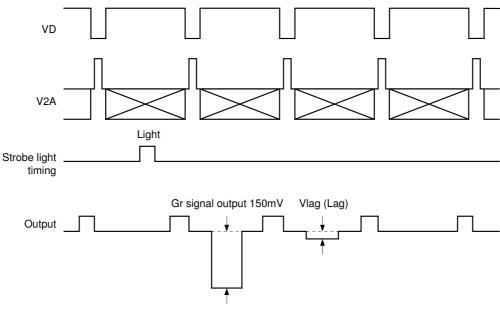
Measure the average value of the signal output (Vdt [mV]) with the device ambient temperature 60 ℃ and the device in the light-obstructed state, using the horizontal idle transfer level as a reference.

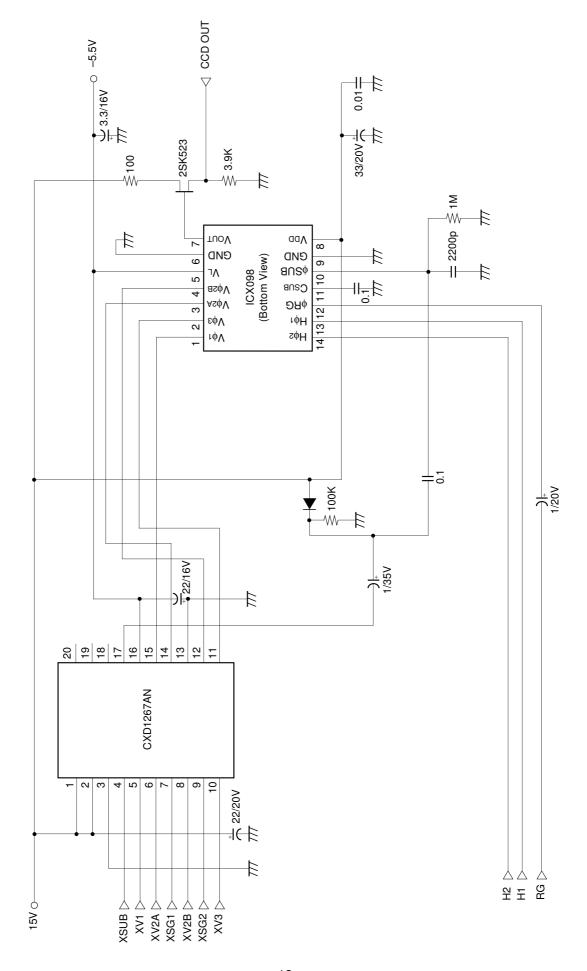
7. Dark signal shading

After measuring 6, measure the maximum (Vdmax [mV]) and minimum (Vdmin [mV]) values of the dark signal output and substitute the values into the following formula.

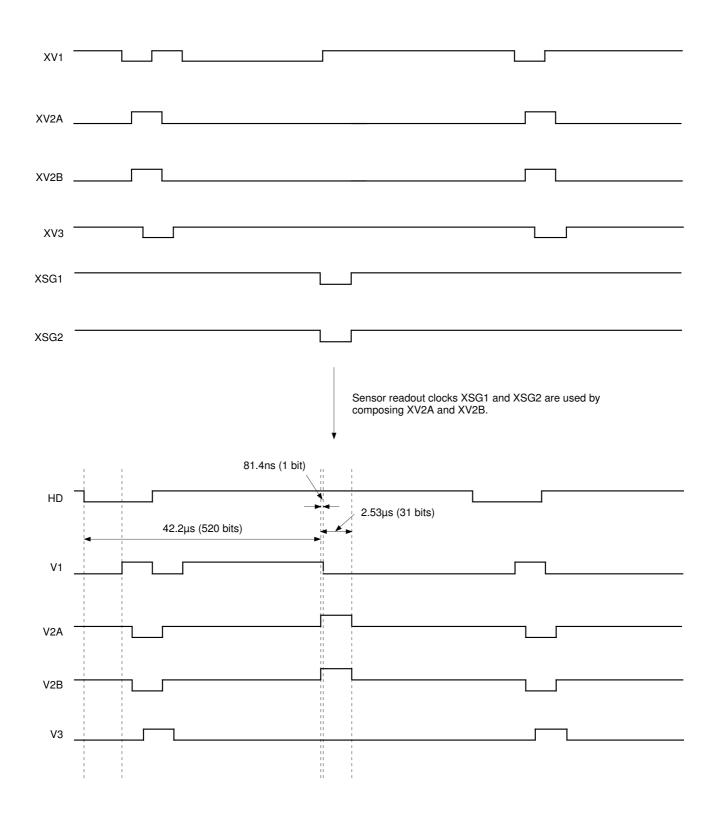
$$\Delta Vdt = Vdmax - Vdmin [mV]$$

8. Line crawl

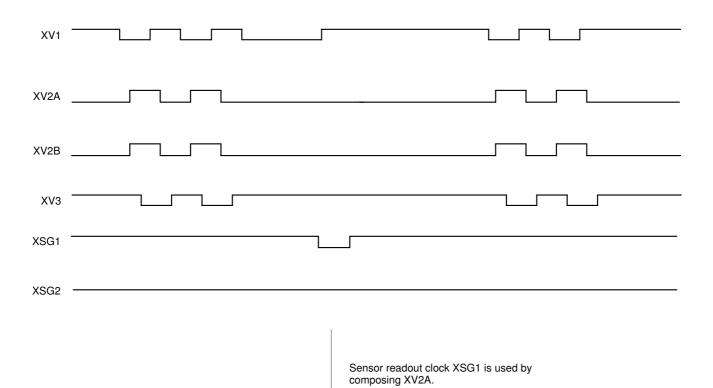

Set to standard imaging condition II. Adjusting the luminous intensity so that the average value of the Gr signal output is 150mV, and then insert R, G, and B filters and measure the difference between G signal lines (Δ Glr, Δ Glg, Δ Glb [mV]) as well as the average value of the G signal output (Gar, Gag, Gab). Substitute the values into the following formula.

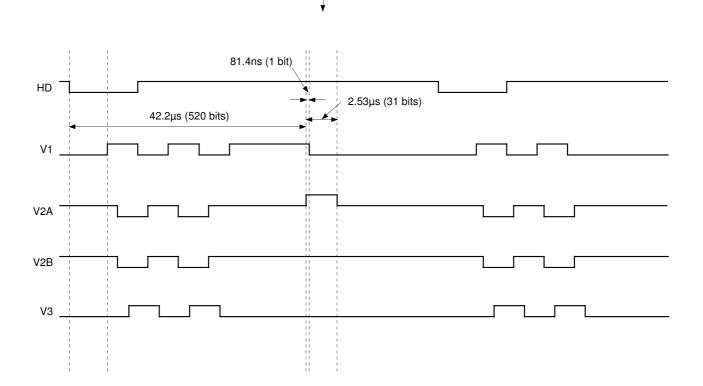

Lci =
$$\frac{\Delta Gli}{Gai} \times 100$$
 [%] (i = r, g, b)

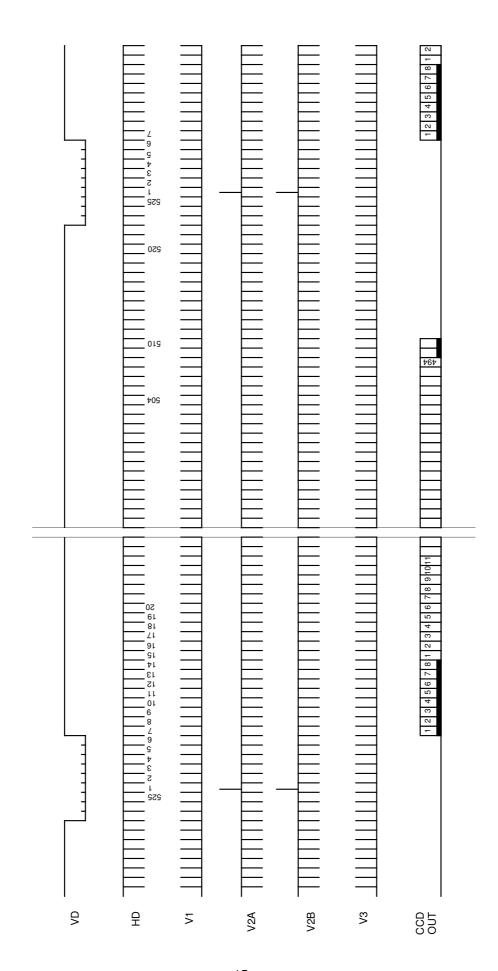
9. Lag


Adjust the Gr signal output value generated by strobe light to 150mV. After setting the strobe light so that it strobes with the following timing, measure the residual signal (Vlag). Substitute the value into the following formula.

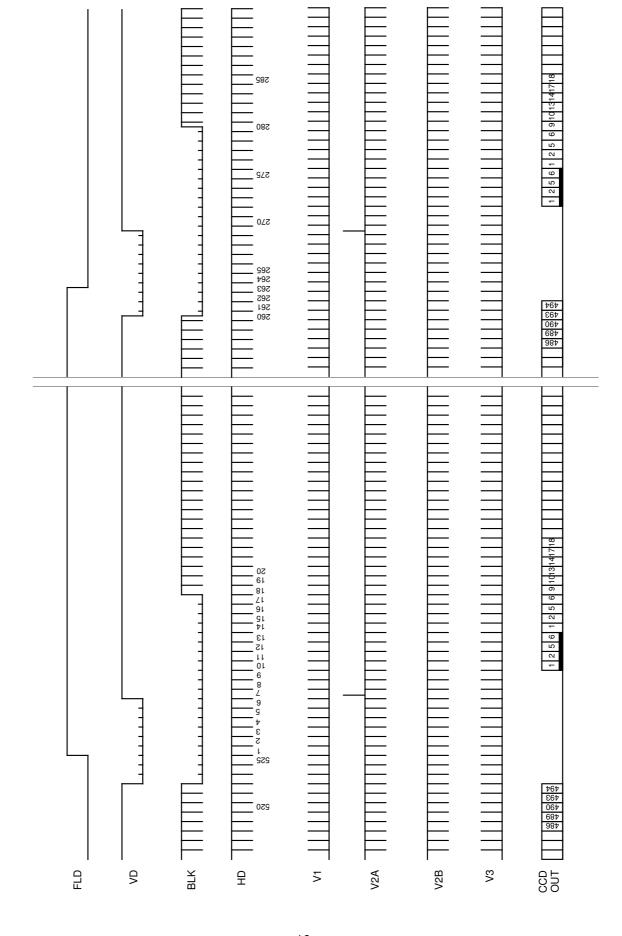
$$Lag = (Vlag/150) \times 100 [\%]$$

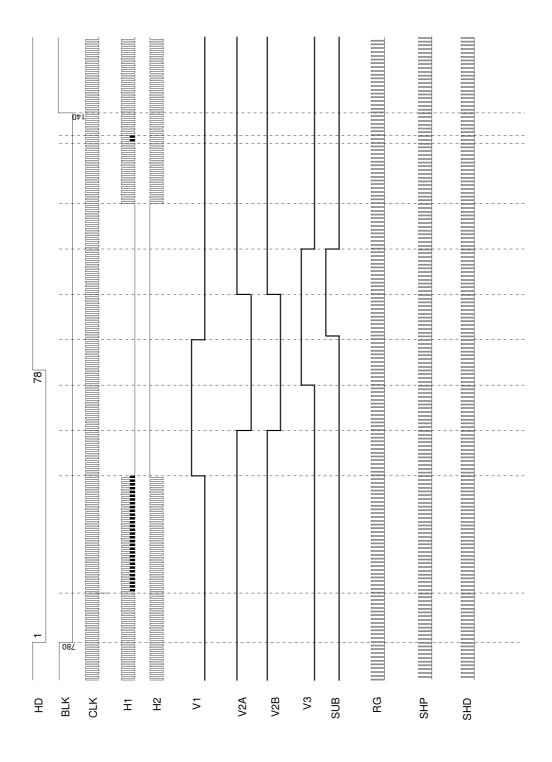


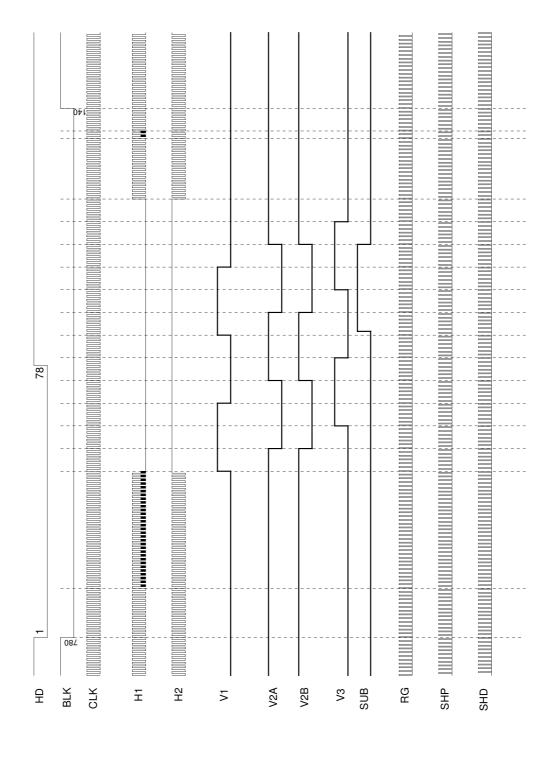



Sensor Readout Clock Timing Chart Progressive Scan Mode

Sensor Readout Clock Timing Chart Monitoring Mode






Monitoring Mode

Drive Timing Chart (Vertical Sync)

Progressive Scan Mode

Notes on Handling

1) Static charge prevention

CCD image sensors are easily damaged by static discharge. Before handling be sure to take the following protective measures.

- a) Either handle bare handed or use non-chargeable gloves, clothes or material. Also use conductive shoes.
- b) When handling directly use an earth band.
- c) Install a conductive mat on the floor or working table to prevent the generation of static electricity.
- d) lonized air is recommended for discharge when handling CCD image sensor.
- e) For the shipment of mounted substrates, use boxes treated for the prevention of static charges.

2) Soldering

- a) Make sure the package temperature does not exceed 80 °C.
- b) Solder dipping in a mounting furnace causes damage to the glass and other defects. Use a ground 30W soldering iron and solder each pin in less than 2 seconds. For repairs and remount, cool sufficiently.
- c) To dismount an image sensor, do not use a solder suction equipment. When using an electric desoldering tool, use a thermal controller of the zero cross On/Off type and connect it to ground.

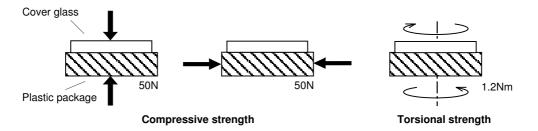
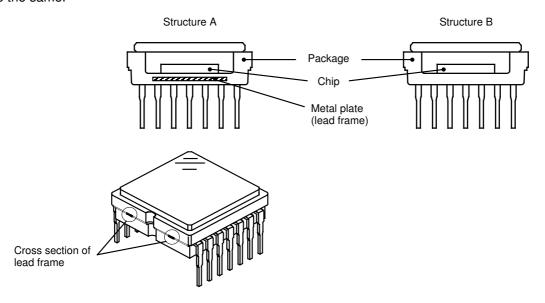

3) Dust and dirt protection

Image sensors are packed and delivered by taking care of protecting its glass plates from harmful dust and dirt. Clean glass plates with the following operation as required, and use them.

- a) Perform all assembly operations in a clean room (class 1000 or less).
- b) Do not either touch glass plates by hand or have any object come in contact with glass surfaces. Should dirt stick to a glass surface, blow it off with an air blower. (For dirt stuck through static electricity ionized air is recommended.)
- c) Clean with a cotton bud and ethyl alcohol if the grease stained. Be careful not to scratch the glass.
- d) Keep in a case to protect from dust and dirt. To prevent dew condensation, preheat or precool when moving to a room with great temperature differences.
- e) When a protective tape is applied before shipping, just before use remove the tape applied for electrostatic protection. Do not reuse the tape.

4) Installing (attaching)

a) Remain within the following limits when applying a static load to the package. Do not apply any load more than 0.7mm inside the outer perimeter of the glass portion, and do not apply any load or impact to limited portions. (This may cause cracks in the package.)

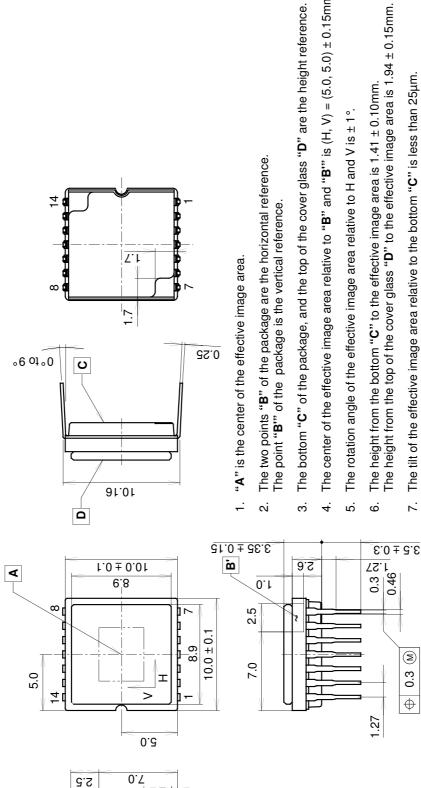


b) If a load is applied to the entire surface by a hard component, bending stress may be generated and the package may fracture, etc., depending on the flatness of the bottom of the package. Therefore, for installation, use either an elastic load, such as a spring plate, or an adhesive.

- c) The adhesive may cause the marking on the rear surface to disappear, especially in case the regulated voltage value is indicated on the rear surface. Therefore, the adhesive should not be applied to this area, and indicated values should be transferred to the other locations as a precaution.
- d) The notch of the package is used for directional index, and that can not be used for reference of fixing. In addition, the cover glass and seal resin may overlap with the notch of the package.
- e) If the lead bend repeatedly and the metal, etc., clash or rub against the package, the dust may be generated by the fragments of resin.
- f) Acrylate anaerobic adhesives are generally used to attach CCD image sensors. In addition, cyanoacrylate instantaneous adhesives are sometimes used jointly with acrylate anaerobic adhesives. (reference)

5) Others

- a) Do not expose to strong light (sun rays) for long periods, color filters will be discolored. When high luminance objects are imaged with the exposure level control by electronic-iris, the luminance of the image-plane may become excessive and discolor of the color filter will possibly be accelerated. In such a case, it is advisable that taking-lens with the automatic-iris and closing of the shutter during the power-off mode should be properly arranged. For continuous using under cruel condition exceeding the normal using condition, consult our company.
- b) Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or usage in such conditions.
- c) The brown stain may be seen on the bottom or side of the package. But this does not affect the CCD characteristics.
- d) This package has 2 kinds of internal structure. However, their package outline, optical size, and strength are the same.



The cross section of lead frame can be seen on the side of the package for structure A.

4

Unit: mm Package Outline

14 pin DIP (400mil)

6.0

0.1

2.5

Ω

PACKAGE STRUCTURE

 (\mathbf{z})

0.3

 \oplus

œ. . ნ

PACKAGE MATERIAL	Plastic
LEAD TREATMENT	GOLD PLATING
LEAD MATERIAL	42 ALLOY
PACKAGE MASS	0.60g
DRAWING NUMBER	AS-D3 -01(E)

he center of the effective image area relative to "B" and "B" is (H, V) = $(5.0, 5.0) \pm 0.15$ mm.
he rotation angle of the effective image area relative to H and V is \pm 1 $^\circ$.
he height from the bottom "C" to the effective image area is 1.41 \pm 0.10mm. he height from the top of the cover glass "D" to the effective image area is 1.94 \pm 0.15mm.
he tilt of the effective image area relative to the bottom "C" is less than 25 μ m. he tilt of the effective image area relative to the top "D" of the cover glass is less than 25 μ m.
he thickness of the cover glass is 0.75mm, and the refractive index is 1.5.

The notch of the package is used only for directional index, that must not be used for reference of fixing.