胃MOSPEC

NPN SILICON POWER TRANSISTORS

... fast switching speeds and high current capacity ideally suit these parts for use in switching regulators, inverters, wide-band amplifiers and power oscillators in industrial and commercial applications.

FEATURES:

* High Speed -t $f=0.5$ us (Max)
*Low $\mathrm{V}_{\text {CE(SAT) }} \leqq 2.5 \mathrm{~V}$ @ $\mathrm{I}_{\mathrm{c}}=20 \mathrm{~A}$

MAXIMUM RATINGS

Characteristic	Symbol	2N6038	2N5039	Unit
Collector-Emitter Voltage	$V_{\text {cEO }}$	90	75	V
Collector-Base Voltage	$V_{\text {cBo }}$	150	120	V
Collector-Emitter Voltage	$V_{\text {cev }}$	150	120	V
Emitter-Base Voltage	$V_{\text {EBO }}$	7		V
Collector Current-Continuous - Peak	I_{c}	$\begin{aligned} & 20 \\ & 30 \end{aligned}$		A
Base Current	I_{B}	5		A
Total Power Dissipation@ $T_{C}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{array}{r} 140 \\ 0.8 \end{array}$		$\underset{\mathbf{W} /{ }^{\circ} \mathrm{C}}{\mathbf{W}}$
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	-65 to +200		${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance Junction to Case	Rejc	1.25	${ }^{\circ} \mathrm{CM}$

TO-3

PIN 1.BASE
2.EMITER

COLLECTOR(CASE)

DIM	MILLIMETERS	
	MIN	MAX
A	38.75	39.96
B	19.28	22.23
C	7.96	9.28
D	11.18	12.19
E	25.20	26.67
F	0.92	1.09
G	1.38	1.62
H	29.90	30.40
I	16.64	17.30
J	3.88	4.36
K	10.67	11.18

ELECTRICAL CHARACTERISTICS ($T_{c}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Charactoristic	Symbol	Min	Max	Unit

OFF CHARACTERISTICS

Collector - Emitter Sustaining Voltage (1) $\left(I_{C}=200 \mathrm{~mA}, I_{B}=0\right)$	$\begin{aligned} & \text { 2N5038 } \\ & \text { 2N5039 } \end{aligned}$	$V_{\text {ceorsus) }}$	$\begin{aligned} & 90 \\ & 75 \end{aligned}$		V
Collector Cutoff Current	$\begin{aligned} & \text { 2N5038 } \\ & \text { 2N5039 } \\ & \text { 2N5038 } \\ & \text { 2N5039 } \end{aligned}$	$\mathrm{I}_{\text {cex }}$		$\begin{aligned} & 50 \\ & 50 \\ & 10 \\ & 10 \end{aligned}$	mA
Emitter Cutoff Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{EB}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\right) \\ & \left(\mathrm{V}_{\mathrm{EB}}=7.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\right) \end{aligned}$	2N5038 2N5039 Both	$I_{\text {ebo }}$		5 15 50	mA

ON CHARACTERISTICS (1)

DC Current Gain $\left(I_{C}=12 \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}\right)$ 2N5038 $\left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}\right)$	hFE	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	
Collector - Emitter Saturation Voltage $\left(I_{C}=20 \mathrm{~A}, I_{B}=5.0 \mathrm{~A}\right)$	$V_{\text {CE(sat) }}$		2.5	V
Base - Emitter Saturation Voltage $\left(I_{C}=20 \mathrm{~A}, I_{\mathrm{B}}=5.0 \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$		3.3	V

SWITCHING CHARACTERISTICS

Rise Time	$\begin{aligned} & V_{c \mathrm{C}}=30 \mathrm{~V} \\ & \left(I_{\mathrm{C}}=12 \mathrm{~A}, \mathrm{I}_{\mathrm{B} 1}=-\mathrm{I}_{\mathrm{B} 2}=1.2 \mathrm{~A}\right) \\ & \left(I_{\mathrm{C}}=10 \mathrm{~A}, \mathrm{I}_{\mathrm{B} 1}=-\mathrm{I}_{\mathrm{B} 2}=1.0 \mathrm{~A}\right) \\ & 2 \mathrm{~N} 5038 \end{aligned}$	t_{r}	0.5	us
Storage Time		t_{s}	1.5	us
Fall Time		t_{f}	0.5	us

(1) Pulse Test: Pulse width $\leqq 300$ us , Duty Cycle $\leqq 2.0 \%$

ACTIVE REGION SAFE OPERATING AREA (SOA)

$V_{\text {ce }}$, COLLECTOR EMITTER VOLTAGE (VOLTS)

There are two limitation on the power handling ability of a transistor:average junction temperature and second breakdown safe operating area curves indicate $\mathrm{I}_{\mathrm{C}}-\mathrm{V}_{C E}$ limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than curves indicate.

Second breakdown pulse limits are valid for duty cycles to 10\%,At high case temperatures, thermal limitations may reduce the power that can be handied to values less than the limitations imposed by second breakdown.

