$\boxed{7 \%}$
 ST890
 1.2A CURRENT LIMITED HIGH SIDE WITH THERMAL SHUTDOWN

- 2.7V TO 5.5V INPUT RANGE
- PROGRAMMABLE CURRENT LIMIT UP TO 1.2A
- LOW QUIESCENT CURRENT
- THERMAL SHUTDOWN
- FAULT INDICATOR OUTPUT
- $90 \mathrm{~m} \Omega$ (TYP.) ON RESISTANCE
- SO-8 PACKAGE

DESCRIPTION

The ST890 is a low voltage, P-Channel MOSFET power switch intended for high side load switching applications.
This switch operates with inputs from 2.7 V ti 5.5 V , making it ideal for both 3 V and 5 V systems. Internal current limiting circuitry protects the input supply against overload. Thermal overload

protection limits power dissipation and junction temperatures.
The ST890's maxmimum current limits is 1.2A. The current limit through the switch is programed with a resistor from SET to groung. The ST890 is available in SO-8 package. Main applications are: PCMCIA slots, Access bus slots, Portable equipment.

ORDERING CODES

Type	Temperature Range	Package	Comments
ST890CD	0 to $70^{\circ} \mathrm{C}$	SO-8 (Tube)	50 parts per tube $/ 40$ tube per box
ST890CDR	0 to $70^{\circ} \mathrm{C}$	SO-8 (Tape \& Reel)	2500 parts per reel
ST890BD	-40 to $85^{\circ} \mathrm{C}$	SO-8 (Tube)	50 parts per tube $/ 40$ tube per box
ST890BDR	-40 to $85^{\circ} \mathrm{C}$	SO-8 (Tape \& Reel)	2500 parts per reel

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter ${ }^{2}$	Value	Unit
V_{I}	Supply Voltage	-0.5 to 6	V
$\mathrm{~V}_{\mathrm{ON},}$	Power DMOS Drain to Source Voltage	-0.5 to 6	V
$\mathrm{~V}_{\mathrm{FAULT}}$			
$\mathrm{V}_{\mathrm{SET},} \mathrm{V}_{\mathrm{O}}$	Logic Input Voltage	-0.5 to $\left(\mathrm{V}_{\mathrm{IN}}+0.5\right)$	V
I_{DS}	Maximum Continuous Switching Current	1.5	A
$\mathrm{~T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	Operating Junction Temperature Range (C series)		
(B series)			

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

THERMAL DATA

Symbol	Parameter	SO-8	Unit
$\mathrm{R}_{\mathrm{th} j-\mathrm{amb}}$	Thermal Resistance Junction-ambient (*)	160	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(*) This value depends from thermal design of PCB on which the device is mounted.

TRUTH TABLE FOR ON/OFF SWICH

$\overline{\text { ON} / \text { OFF }}$	OUT
L	ON
H	OFF
FAULT	FLAG
H	Normal Operation
L	Fault Condition

CONNECTION DIAGRAM (top view)

PIN DESCRIPTION

Pin \mathbf{N}°	Symbol	Name and Function
1,2	$\overline{\text { ON }}$	Input P-Channel MOSFET source. Bypass IN with a 1μ F capacitor to ground.
3	Active Low Switch On Input. A logic low turns the switch ON	
4	GND	Ground
5	OUT	Set Current Limit Input. A resistor from SET to GROUND sets the current limit for the switch. R SET $=1.38 \times 10^{3} / I_{\text {LIM }}$, where $I_{\text {LIM }}$ is the desired currnet limit in Amperes
6,7	Switch Output. P-Channel MOSFET drain. Bypass OUT with a 0.1 mF capacitor to GROUND.	
8	$\overline{\text { FAULT }}$	Fault Indicator Output. This open drain output goes low when in current limit or when the die temperature exceeds $135^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{I N}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise specified. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{1}	Operating Voltage	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	2.7		5.5	V
I_{CC}	ON Quiescent Supply Current	$\mathrm{V}_{\mathrm{I}}=5 \mathrm{~V}, \quad \overline{\mathrm{ON}}=\mathrm{GND} \quad \mathrm{I}_{\mathrm{O}}=0$		13	25	$\mu \mathrm{A}$
${ }^{\prime}$ (CCOFF)	OFF Quiescent Supply Current	$\overline{\mathrm{ON}}=\mathrm{IN} \quad \mathrm{V}_{1}=\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			1	$\mu \mathrm{A}$
		$\overline{\mathrm{ON}}=\mathrm{IN} \quad \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{O}}=0$			5	
$\mathrm{V}_{\text {ULO }}$	Undervoltage Lockout	Rising Edge	2.0	2.4	2.6	V
$\mathrm{V}_{\text {HYST }}$	Undervoltage Lockout Hysteresys			100		mV
R_{ON}	ON Resistance	$\mathrm{V}_{1}=4.5 \mathrm{~V}$		75	120	$\mathrm{m} \Omega$
		$\mathrm{V}_{1}=3 \mathrm{~V}$		90	130	
$\mathrm{V}_{\text {SET }}$	Reference Voltage to Turns The Switch OFF	$\mathrm{l}_{\mathrm{O}}=100 \mathrm{~mA} \mathrm{~V}_{\text {SET }}$ rised until $\mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}$	1.178	1.24	1.302	V
$\mathrm{I}_{\text {max }}$	Maximum Output Current Limit			1.2		A
$\mathrm{I}_{\text {Sc }}$	Short Circuit Current Limit			1.2 ILIM		A
$\mathrm{I}^{\prime} / \mathrm{I}_{\text {SET }}$	I_{O} to $\mathrm{I}_{\text {SET }}$ Current Ratio	$\mathrm{l}_{\mathrm{O}}=500 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{O}}>1.6 \mathrm{~V}$	970	1110	1300	
V_{IL}	ON Input Low Level Voltage	$\mathrm{V}_{1}=2.7$ to 5.5 V			0.8	V
V_{IH}	ON Input High Level Voltage	$\mathrm{V}_{1}=2.7$ to 3.6 V	2.0			V
		$\mathrm{V}_{1}=4.5$ to 5.5 V	2.4			
1	ON Input Leakage Current	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SET }}$	$I_{\text {SET }}$ Bias Current	$\mathrm{V}_{\text {SET }}=1.24 \mathrm{~V} \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{O}}$		0.5	3	$\mu \mathrm{A}$
V_{OL}	$\overline{\text { FAULT Output Low Voltage }}$	$\mathrm{I}_{\text {SINK }}=1 \mathrm{~mA} \quad \mathrm{~V}_{\text {SET }}=1.4 \mathrm{~V}$		0.15		V
I_{OH}	$\overline{\text { FAULT Output High Voltage }}$	$\mathrm{V}_{\text {FAULT }}=5.5 \mathrm{~V} \quad \mathrm{~V}_{\text {SET }}=1 \mathrm{~V}$			1	$\mu \mathrm{A}$
$\mathrm{T}_{\text {PROT }}$	Thermal Protection			130		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {HYST }}$	Thermal Hysteresys			15		${ }^{\circ} \mathrm{C}$

TIMINGL CHARACTERISTICS $\left(\mathrm{V}_{I N}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise specified. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter		Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\text {RESP }}$	Slow Current Loop Response Time	20\% Current Overdrive, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			5		$\mu \mathrm{s}$
	Fast Current Loop Response Time				2		$\mu \mathrm{s}$
${ }_{\text {ton }}$	Turn ON Time	$\mathrm{V}_{1}=5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$		25	50	$\mu \mathrm{s}$
		$\mathrm{V}_{1}=3 \mathrm{~V}$,	$\mathrm{l}_{\mathrm{O}}=500 \mathrm{~mA}$		50		
toff	Turn OFF Time	$\mathrm{V}_{1}=5 \mathrm{~V}$		1	2	10	$\mu \mathrm{s}$

TYPICAL APPLICATION CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS (unless otherwise specified $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Figure 1 : ON Resistance vs Supply Voltage

Figure 2 : ON Resistance vs Supply Voltage

Figure 3 : ON Resistance vs Temperature

Figure 4 : Output Voltage vs Input Voltage

Figure 5 : Switching Waveforms,

Figure 6 : Switching Waveforms,

SO-8 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
C	0.25		0.5	0.010		0.019
c1	45° (typ.)					
D	4.8		5.0	0.189		0.196
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.149		0.157
L	0.4		1.27	0.015		0.050
M			0.6			0.023
S	8° (max.)					

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© $\mathbf{2 0 0 2}$ STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
© http://www.st.com

