SGM330A

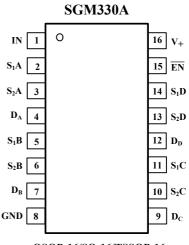
Quad, Wide-Bandwidth SPDT Video Analog Switch

GENERAL DESCRIPTION

The SGM330A is a Quad, bidirectional, single-pole/doublethrow (SPDT) CMOS Video analog switches (Mux/DeMux) designed to operate at a single +5V supply. This 2-channel multiplexer/demultiplexer is recommended for both RGB and composite video switching applications. The Video Switch can be driven from a current output RAMDAC or voltage output composite video source.

Wide bandwidth (500MHz) , low On-Resistance (6 Ω) , and low crosstalk make it suitable for high-frequency and other applications. Also this device has exceptionally high current capability which is far greater than most analog switches offered today.

The SGM330A offers a high-performance, low-cost solution to switch between video sources. It is specified -40° C to +85°C temperature range. The SGM330A has lead (Pb) free SOIC-16, TSSOP-16 and QSOP-16 packages.


FEATURES

- Wide Bandwidth: 500 MHz
- Low On-Resistance: 6Ω(TYP)
- Low Crosstalk: -60dB @ 10MHz(TYP)
- Single Power Operation: +5V
- Fast Switching Time
- Rail-to-Rail Operation
- Typical Power Consumption (0.1 μW)
- TTL/CMOS Compatible
- Micro size Package SO-16
 - TSSOP-16 QSOP-16

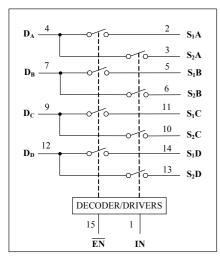
PIN CONFIGURATIONS (TOP VIEW)

APPLICATIONS

Personal Video Recorders Terrestrial Set-Top Boxes Hard Disk Recorders DVD Players Game Consoles Digital VCRs Desktop Video Editors Audio and Video Switching

QSOP-16/SO-16/TSSOP-16

ORDERING INFORMATION


ORDERING NUMBER	PIN- PACKAGE	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	PACKAGE OPTION
SGM330A-YS/TR	SO-16	- 40°C to +85°C	SGM330A-YS	Tape and Reel, 2500
SGM330A-YTS/TR	TSSOP-16	- 40°C to +85°C	SGM330A-YTS	Tape and Reel, 3000
SGM330A-YQS/TR	QSOP-16	- 40°C to +85°C	SGM330A-YQS	Tape and Reel, 3000

ABSOLUTE MAXIMUM RATINGS

SO-16, θ _J A	
TSSOP-16, θ _J A	100°C/W
QSOP-16, θja	103°C/W
Lead Temperature (soldering, 10s)	260°C
ESD Susceptibility	
HBM	4000V
MM	400V

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

BLOCK DIAGRAM (positive logic)

FUNCTION TABLE

\overline{EN}	IN	ON Switch
0	0	S1A, S1B, S1C, S1D
0	1	S2A, S2B, S2C, S2D
1	Х	Disabled

Notes: S1 is normally connected when IN is "0".

PIN DESCRIPTION

NAME	FUNCTION	
S1A, S1B, S1C, S1D S2A, S2B, S2C, S2D	Analog Video I/()	
IN	Select input	
\overline{EN}	Switch-enable input	
Da, Db, Dc, Dd	Analog video I/O	
GND	Ground	
V+	Power supply	

ELECTRICAL CHARACTERISTICS

(Over the Operating Range, $V_+ = +5 V \pm 10\%$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$.)

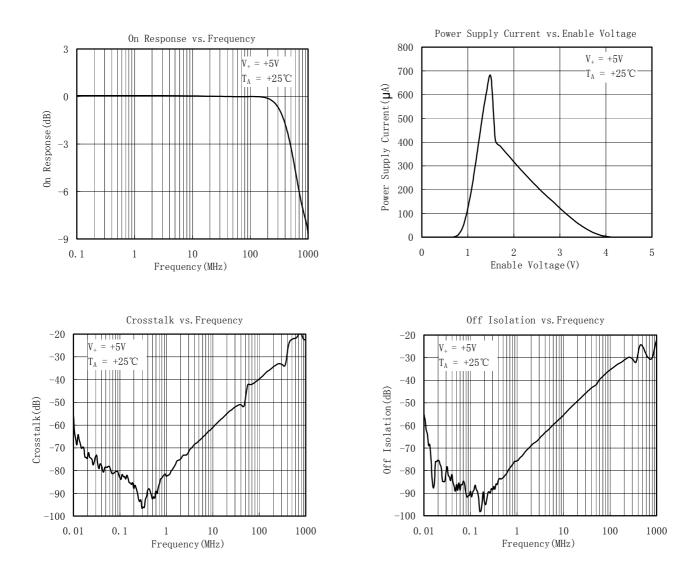
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP (1)	MAX	UNITS
DC CHARACTERISTICS						
Analog Signal Range	VANALOG		0		2.0	V
On-Resistance		$V_{+} = 4.5V$, $V_{I} = 1.0V$, $R_{L} = 75\Omega$, $I_{ON} = 13mA$		6	9	Ω
On-Resistance	Ron	$V_{+} = 4.5V, V_{I} = 2.0V, R_{L} = 75\Omega, I_{ON} = 26mA$		7	10	Ω
Input High Voltage	Vih	Guaranteed Logic HIGH Level	2.0			V
Input Low Voltage	Vil	Guaranteed Logic LOW Level	-0.5		0.8	V
Input High Current	IIH	$V_{+} = 5.5V, V_{IN} = V_{+}$			±1	μΑ
Input Low Current	IIL	$V_{+} = 5.5V, V_{IN} = GND$			± 1	μΑ
Analog Output Leakage Current	Io	$0 \le S1$, S2, or $D \le V_+$, Switch OFF			± 1	μΑ
Short Circuit Current	Ios			230		mA
Clamp Diode Voltage	Vik	$V_{CC} = 4.5V, I_{IN} = -18mA$	-0.7	-0.9		V
Input Hysteresis at Control Pins	VH			200		mV
DYNAMIC CHARACTERISTICS						
Turn-On Time	Ton	$R_L = 70\Omega$, $C_L = 20$ pF(Figure 1)		14	17	ns
Turn-Off Time	Toff	$R_L = 70\Omega$, $C_L = 20$ pF(Figure 1)		4	7	ns
Off Isolation	Oirr	$R_L = 150\Omega$, f = 10MHz(Figure 5)		-55		dB
Channel-to-Channel Crosstalk	Xtalk	$R_{IN} = 10\Omega$, $R_L = 150\Omega$, $f = 10MHz$ (Figure 4)		-60		dB
Bandwidth –3 dB	BW	$R_L = 150\Omega$ (Figure 3)			500	MHz
Input/Enable Capacitance	Cin	$V_{IN} = 0V$, f = 1MHz			5	pF
Switch OFF Capacitance	Coff	$V_{IN} = 0V$, f = 1MHz			5	pF
Switch ON Capacitance	Con	$V_{IN} = 0V$, f = 1MHz			8	pF
Differential Gain	Dg	$R_L = 150\Omega$, f = 3.58MHz(Figure 2)		0.51		%
Differential Phase	Dp	$R_L = 150\Omega$, f = 3.58MHz(Figure 2)		0.01		0
POWER REQUIREMENTS						
Quiescent Power Supply Current	Icc	V+= +5.5V, IN = GND or 5V		0.1	20.0	μΑ
Supply Current per Input @ TTL HIGH	∆ıcc	V+=+5.5V, IN = 3.4V			300	uA
Supply Current per Input per MHz	Iccd	V+= +5.5V,, S1, S2 and D Pins Open \overline{EN} = GND Control Input Toggling 50% Duty Cycle			0.1	mA/ MHz

Specifications subject to change without notice.

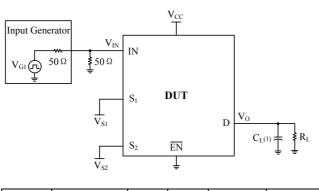
Notes:

1. Typical values are at Vcc = 5.0V, T_A = 25°C ambient and maximum loading.

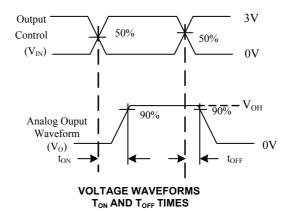
PARAMETER DEFINITIONS


PARAMETER	DESCRIPTION
Ron	Resistance between source and drain with switch in the ON state
Io	Output leakage current measured at S1, S2, and D with the switch OFF
VIN	Digital voltage at the IN pin that selects between S1 and S2 analog inputs
VI	Voltage applied to the D or S1, S2 pins when D or S1, S2 is the switch input
Ven	A voltage that ENABLES the chip
Cin	Capacitance at the digital inputs
Coff	Capacitance at analog I/O (S1, S2, D) with switch OFF
Con	Capacitance at analog I/O (S1, S2, D) with switch ON
VIH	Minimum input voltage for logic HIGH
Vil	Minimum input voltage for logic LOW
IIH (IIL)	Input current of the digital input
Ios	Minimum short circuit current for S1, S2 and D
Ton	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned ON. The peak analog voltage is 0.714V
Toff	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned OFF. The peak analog voltage is 0.714V
Bw	response of the switch in the ON state measured at 3dB down
Xtalk	Is an unwanted signal coupled from channel to channel. Measured in –dB. XTALK = 20 LOG VOUT/VIN. This is non-adjacent crosstalk
D _G	Magnitude variation between analog input and output pins when the switch is ON and the dc offset of composite-video signal varies at the analog input pin. In the NTSC standard, the frequency of the video signal is 3.58 MHz, and dc offset is from 0 to 0.714 V.
D _P	Phase variation between analog input and output pins when the switch is ON and the dc offset of composite-video signal varies at the analog input pin. In the NTSC standard, the frequency of the video signal is 3.58 MHz, and dc offset is from 0 to 0.714 V.
Oirr	Off isolation is the resistance (measured in –dB) between the input and output with the switch off (NO)

CAUTION


This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. Shengbang Micro-electronics recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.


TYPICAL PERFORMANCE CHARACTERISTICS

TEST CIRCUITS

Test	Vcc	$R_{\rm L}$	CL	Vs1	Vs2
т	5V±0.5V	75	20	GND	3V
Ton	5V±0.5V	75	20	3V	GND
т	5V±0.5V	75	20	GND	3V
Toff	5V±0.5V	75	20	20 3V	GND

NOTES:

1. $C{\scriptscriptstyle L}$ includes probe and jig capacitance.

2. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Zo = 50 Ω , tr \leq 2.5 ns, tr \leq 2.5 ns.

3. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Test Circuit for Voltage Waveform and Switch Time

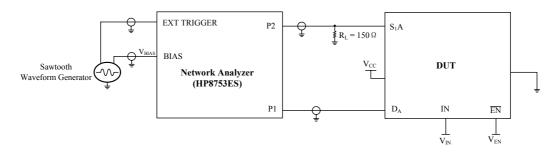


Figure 2. Test Circuit for Differential Gain/Phase Measurement

Differential gain and phase are measured at the output of the ON channel. For example, when $V_{IN} = 0$, $V_{EN} = 0$, and D_A is the input, the output is measured at S_1A .

HP8753ES Setup

Average = 20 RBW = 300 Hz ST = 1.381 s P1 = -7 dBM CW frequency = 3.58 MHz

Sawtooth Waveform Generator Setup

VBIAS = 0 to 1 V Frequency = 0.905 Hz

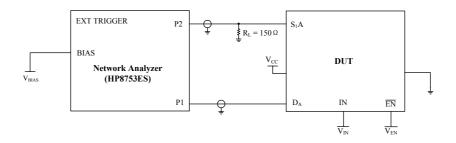
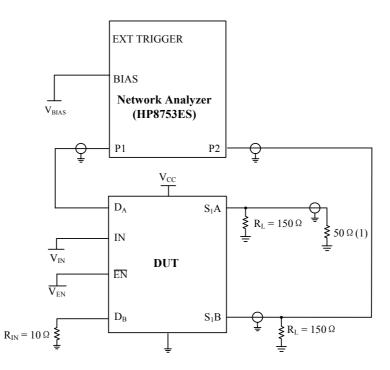



Figure3. Test Circuit for Frequency Response (BW)

Frequency response is measured at the output of the ON channel. For example, when $V_{IN} = 0$, $V_{EN} = 0$, and D_A is the input, the output is measured at S1A. All unused analog I/O ports are left open.

HP8753ES Setup

Average = 4 RBW = 3 Hz VBIAS = 0.35 V ST = 2 s P1 = 0 dBM

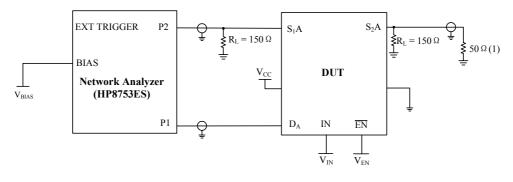

NOTES: (1) A 50 Ω termination resistor is needed for the network analyzer.

Figure 4. Test Circuit for Crosstalk (XTALK)

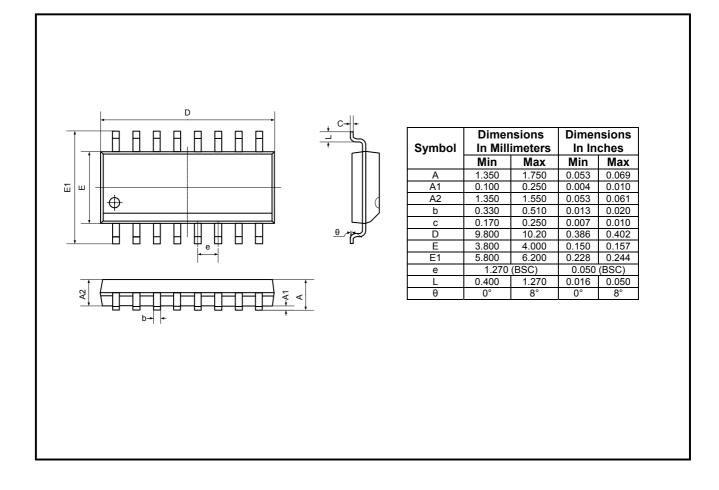
Crosstalk is measured at the output of the nonadjacent ON channel. For example, when $V_{IN} = 0$, $V_{EN} = 0$, and DA is the input, the output is measured at S₁B. All unused analog input (D) ports and output (S) ports are connected to GND through 10Ω and 50Ω pulldown resistors, respectively.

HP8753ES Setup

Average = 4 RBW = 3 kHz V $_{BIAS}$ = 0.35 V ST = 2 s P1 = 0 dBM

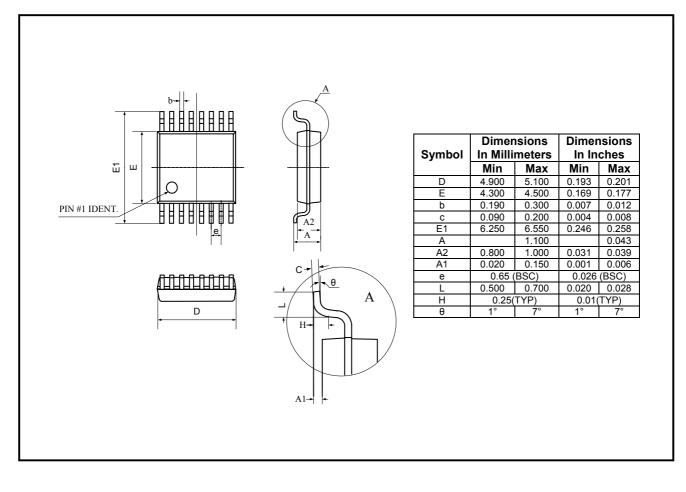
NOTES: (1) A 50Ω termination resistor is needed for the network analyzer.

Figure 5. Test Circuit for Off Isolation (OIRR)

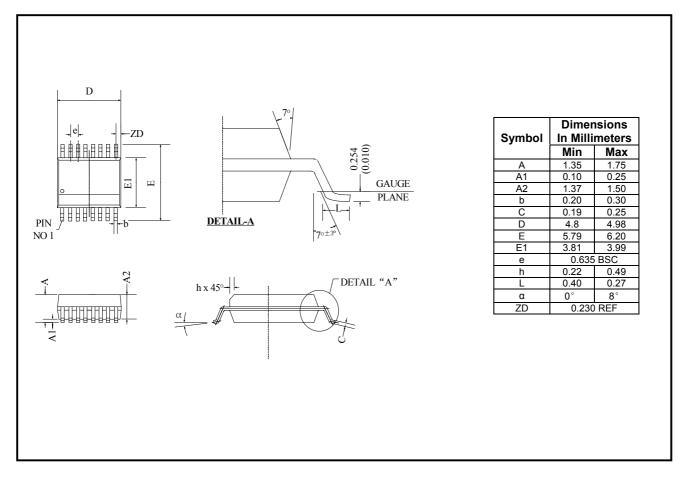

Off isolation is measured at the output of the OFF channel. For example, when $V_{IN} = V_{CC}$, $V_{EN} = 0$, and D_A is the input, the output is measured at S₁A. All unused analog input (D) ports are left open, and output (S) ports are connected to GND through 50 Ω pulldown resistors.

HP8753ES Setup

Average = 4 RBW = 3 kHz VBIAS = 0.35 V ST = 2 s P1 = 0 dBM


PACKAGE OUTLINE DIMENSIONS

SO-16


PACKAGE OUTLINE DIMENSIONS

TSSOP-16

PACKAGE OUTLINE DIMENSIONS

QSOP-16

