RT9365

100mA 5-Channel Charge Pump White LED Driver with Low Dropout Current Source

General Description

The RT9365 is a high performance white LED driver. It integrates current sources and automatic mode selection charge pump. The part maintains the high efficiency by utilizing an x1/x1.5 fractional charge pump and low dropout current sources. The small equivalent x1 mode open loop resistance and ultra-low dropout voltage of current source extend the operating time of x1 mode and optimize the efficiency of Li-ion battery in white LED applications.

The RT9365 supports up to 5 white LEDs and regulates a constant current for uniform intensity. The part implements a 4-bit DAC for brightness control. Users can easily configure the LED current from 1.25mA to 20mA by a serial pulse. The dimming of white LEDs current can be achieved by applying a pulse signal to the EN pin. There are totally 16 steps of current could be set by users. The operating voltage range is 2.8V to 5.0V. Internal soft start circuitry effectively reduces the in-rush current while both start-up and mode transition. The load is disconnected from V_{IN} while shutdown and the shutdown current is less than 1 μ A.

RT9365 is available in a WQFN 3x3-16L package.

Ordering Information

RT9365

- Package Type QW : WQFN-16L 3x3 (W-Type)
- Operating Temperature Range
- P : Pb Free with Commercial Standard G : Green (Halogen Free with Commer
 - cial Standard)

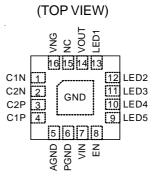
Note :

RichTek Pb-free and Green products are :

- ▶RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.
- ▶100% matte tin (Sn) plating.

Marking Information

For marking information, contact our sales representative directly or through a RichTek distributor located in your area, otherwise visit our website for detail.


Features

- 85% Average Efficiency Over Battery Life
- Support up to 5 White LEDs
- 80mV Typical Current Source Dropout
- Support up to 100mA Output Current
- 1% Typical LED Current Accuracy
- 0.7% Typical LED Current Matching
- Soft Start Function
- Auto Charge Pump Mode Selection
- 250kHz Fixed Frequency Oscillator
- Output Over Voltage Protection
- 16-Step Brightness Control
- Low Input Noise and EMI
- Low 0.3µA Shutdown Current
- RoHS Compliant and 100% Lead (Pb)-Free

Applications

- Mobile Phone, DSC, MP3
- White LED Backlighting
- LCD Display Supply

Pin Configurations

WQFN-16L 3x3

Typical Application Circuit

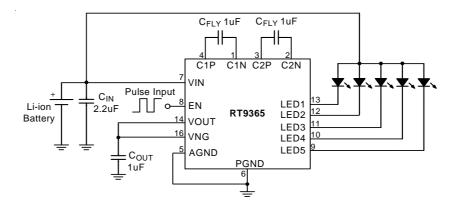


Figure 1. For 5-WLEDs Application Circuit

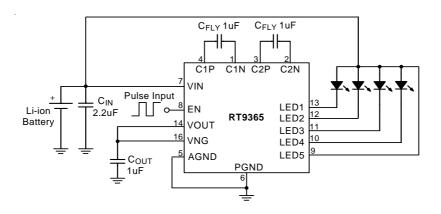
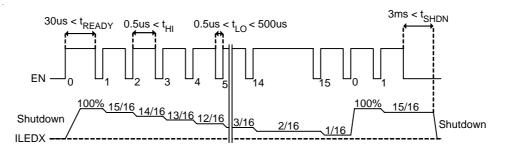
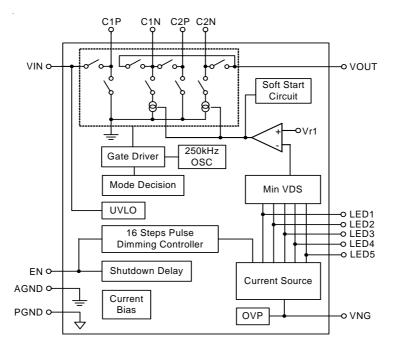



Figure 2. For 4-WLEDs Application Circuit



Functional Pin Description

Pin Number	Pin Name	Pin Function			
1	C1N	Negative Terminal of Bucket Capacitor 1.			
2	C2N	Negative Terminal of Bucket Capacitor 2.			
3	C2P	Positive Terminal of Bucket Capacitor 2.			
4	C1P	Positive Terminal of Bucket Capacitor 1.			
5	AGND	Analog Ground.			
6	PGND	Power Ground.			
7	VIN	Power Input Voltage.			
8	EN	Chip Enable (Active High), and connects to GPIO pin of MCU.			
9	LED 5	Current Sink for LED5. (If not in use, pin should be connected to VIN)			
10	LED 4	Current Sink for LED4. (If not in use, pin should be connected to VIN)			
11	LED 3	Current Sink for LED3. (If not in use, pin should be connected to VIN)			
12	LED 2	Current Sink for LED2. (If not in use, pin should be connected to VIN)			
13	LED 1	Current Sink for LED1. (If not in use, pin should be connected to VIN)			
14	VOUT	Output Voltage Source for LED1 to LED5.			
15	NC	No Internal Connection.			
16	VNG	Charge Pump Output.			
Exposed Pad	GND	Exposed pad should be soldered to PCB board and connected to GND.			

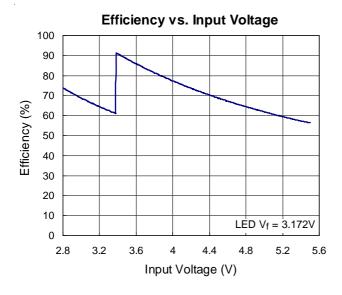
Function Block Diagram

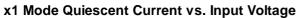
Absolute Maximum Ratings (Note 1)

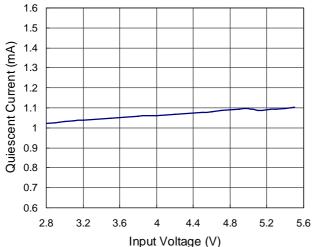
Supply Input Voltage Other I/O Pin Voltage	
• Power Dissipation, PD @ $T_A = 25^{\circ}C$	
 WQFN-16L 3x3 Package Thermal Resistance (Note 4) 	- 1.47 VV
WQFN-16L 3x3, θ_{JA}	- 68°C/W
Junction Temperature	- 150°C
• Lead Temperature (Soldering, 10 sec.)	- 260°C
Storage Temperature Range	- –40°C to 150°C
ESD Susceptibility (Note 2)	
HBM (Human Body Mode)	· 2kV
MM (Machine Mode)	- 200V

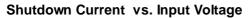
Recommended Operating Conditions (Note 3)

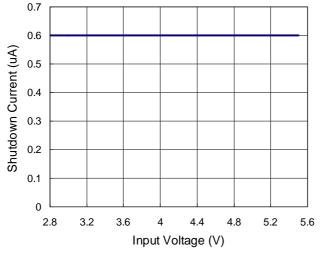
Junction Temperature Range	-40°C to 125°C
Ambient Temperature Range	-40°C to 85°C

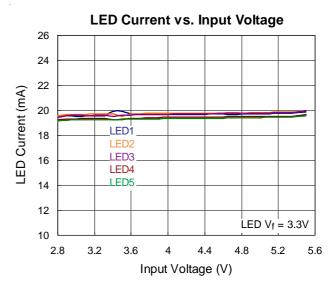

Electrical Characteristics

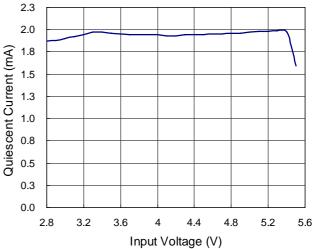

$(V_{IN} = 3.6V, V_F = 3.4V, C_{IN} = C_{OUT} = C_{FLY} = 1\mu F$ (ESR = 30m Ω), I _{LED1} to 5 = 15mA, T _A = 25°C, unless	otherwise specification)
---	--------------------------

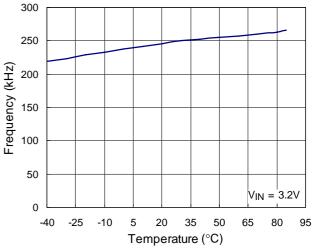

Parameter		Test Condition	Min	Тур	Max	Units
Input Supply Voltage			2.8		5.0	V
Lockout Threshold	V _{UVLOH}	V _{IN} Rising		2.2		V
Lockout Hysteresis				200		mV
urrent		V _{EN} = 1.8V		1		uA
1 Mode	I _{Q_x1}	x1 Mode, V _{IN} = 5.5V, LED off		1		mA
rent	I _{SHDN}	$V_{EN} = 0V, V_{IN} = 5.5V$		0.4	7	μA
x1 Mode to x1.5 Mode Transition Voltage		V_{LED} = 3.4V, $I_{LED1to 5}$ = 15mA		3.5		V
Mode Transition Hystersis				200		mV
I _{LEDx} Accuracy		100% Setting, I _{LED1 to 5}	-8		+8	%
Current Matching		100% Setting, I _{LED1 to 5}	-5		+5	%
for Shut Down	T _{SHDN}		3			ms
EN Low Time for Dimming			0.5		500	μS
EN High Time for Dimming			0.5			μS
Logic-High Voltage	VIH		1.5			V
Logic-Low Voltage	VIL			-	0.4	V
Oscillator Frequency				250		kHz
Over Voltage Protection		V _{IN} – V _{OUT}		5.5		V
	/oltage Lockout Threshold Lockout Hysteresis current 1 Mode rent .5 Mode Transition on Hystersis / ing for Shut Down for Dimming for Dimming Logic-High Voltage Logic-Low Voltage	Voltage VIN Voltage VIN Lockout Threshold VUVLOH Lockout Hysteresis Intervent Surrent IQ_x1 rent ISHDN .5 Mode Transition VTRAN on Hystersis ILED-ERR ing ILED-ERR for Shut Down TSHDN for Dimming TLO for Dimming THI Logic-High Voltage VIL quency fosc	Yoltage VIN Lockout Threshold V_{UVLOH} V_{IN} Rising Lockout Hysteresis Surrent $V_{EN} = 1.8V$ Surrent V_{L} X1 Mode, $V_{IN} = 5.5V$, LED off In Mode I_{Q_X1} x1 Mode, $V_{IN} = 5.5V$, LED off In Mode I_{Q_X1} x1 Mode, $V_{IN} = 5.5V$ Source Ishon $V_{EN} = 0V, V_{IN} = 5.5V$ Source V V_{TRAN} $V_{LED} = 3.4V, I_{LED1 to 5} = 15mA$ Son Hystersis I ILED-ERR 100% Setting, I_{LED1 to 5} Son Hystersis I ILED-LED-ERR 100% Setting, I_{LED1 to 5} for Shut Down T_SHDN TLO Setting, I_LED1 to 5 for Dimming TLO THI ILogic-High Voltage VIH Logic-Low Voltage VIL ILED-LED-ERR ILED-LED-ERR ILED-LED-ERR ILED-LED-ERR	Yoltage VIN 2.8 Lockout Threshold V_{UVLOH} V_{IN} Rising Lockout Hysteresis Surrent $V_{EN} = 1.8V$ 11 Mode I_{Q_x1} x1 Mode, $V_{IN} = 5.5V$, LED off rent I_{SHDN} $V_{EN} = 0V$, $V_{IN} = 5.5V$.5 Mode Transition V_{TRAN} $V_{LED} = 3.4V$, $I_{LED1 to 5} = 15mA$.5 Mode Transition V_{TRAN} $V_{LED} = 3.4V$, $I_{LED1 to 5} = 15mA$.5 Mode Transition V_{TRAN} $V_{LED} = 3.4V$, $I_{LED1 to 5} = 15mA$.6 Mode Transition V_{TRAN} $V_{LED} = 3.4V$, $I_{LED1 to 5} = 15mA$.6 Mode Transition V_{TRAN} $V_{LED} = 3.4V$, $I_{LED1 to 5}$ -8 .100% Setting, $I_{LED1 to 5}$ -8 .7 $I_{LED-LED-ERR}$ 100% Setting, $I_{LED1 to 5}$ -5 for Shut Down T_{SHDN} 3 3 for Dimming T_{H1} 0.5 0.5 Logic-High Voltage VIL uuency f_{OSC}	VoltageVIN2.8Lockout Threshold V_{UVLOH} V_{IN} Rising2.2Lockout Hysteresis200surrent $V_{EN} = 1.8V$ 111 Mode I_{Q_X1} x1 Mode, $V_{IN} = 5.5V$, LED off111 ment I_{SHDN} $V_{EN} = 0V$, $V_{IN} = 5.5V$ 0.4.5 Mode Transition V_{TRAN} $V_{LED} = 3.4V$, $I_{LED1 to 5} = 15mA$ 200.6 m Hystersis2000.4.7 lip100% Setting, $I_{LED1 to 5} = 15mA$ 200.7 lip100% Setting, $I_{LED1 to 5}$ -87 ing $I_{LED-ERR}$ 100% Setting, $I_{LED1 to 5}$ -87 for Shut Down T_{SHDN} 3for Shut Down T_{SHDN} 3for Dimming T_{LO} 0.5Logic-High Voltage V_{IH} 1.5Logic-Low Voltage V_{IL} 250	Voltage VIN 2.8 5.0 Lockout Threshold V_{UVLOH} V_{IN} Rising 2.2 Lockout Hysteresis 200 200 urrent $V_{EN} = 1.8V$ 1 1 1 Mode I_{Q_LX1} x1 Mode, $V_{IN} = 5.5V$, LED off 1 1 Mode I_{Q_LX1} x1 Mode, $V_{IN} = 5.5V$, LED off 1 rent I_SHDN $V_{EN} = 0V$, $V_{IN} = 5.5V$ 0.4 7 .5 Mode Transition V_{TRAN} $V_{LED} = 3.4V$, $I_{LED1 to 5} = 15mA$ 3.5 .5 Mode Transition V_{TRAN} $V_{LED} = 3.4V$, $I_{LED1 to 5} = 15mA$ 200 .5 Mode Transition V_{TRAN} $V_{LED} = 3.4V$, $I_{LED1 to 5} = 15mA$ 3.5 .5 Mode Transition V_{TRAN} $V_{LED} = 3.4V$, $I_{LED1 to 5} = -5$ +8 .6 Thyse setting, $I_{LED1 to 5}$.6 +8 +5 for Dimming

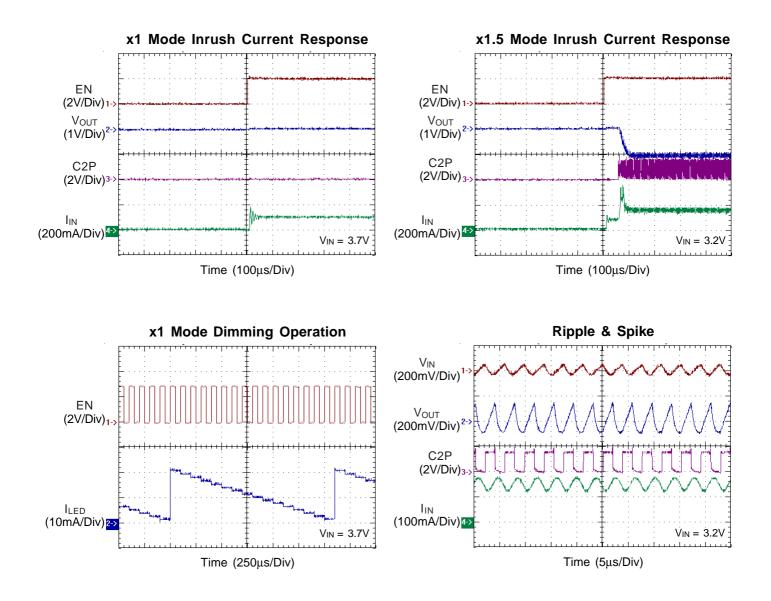

- **Note 1.** Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
- Note 2. Devices are ESD sensitive. Handling precaution is highly recommended.
- Note 3. The device is not guaranteed to function outside its operating conditions.
- Note 4. θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}C$ on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard.


Typical Operating Characteristics








x1.5 Mode Quiescent Current vs. Input Voltage

Frequency vs. Temperature

www.richtek.com

Applications Information

The RT9365 uses a fractional switched capacitor charge pump to power up to four white LEDs with a programmable current for uniform intensity. The part integrates current sources and automatic mode selection charge pump. It maintains the high efficiency by utilizing an x1/x1.5fractional charge pump and current sources. The small equivalent x1 mode open loop resistance and ultra-low dropout voltage of current source extend the operating time of x1 mode and optimize the efficiency in white LED applications.

Input UVLO

The input operating voltage range of the RT9365 is from 2.8V to 5.5V. An input capacitor at the VIN pin could reduce ripple voltage. It is recommended to use a ceramic 1μ F or larger capacitance as the input capacitor. This IC provides an under voltage lockout (UVLO) function to prevent it from unstable issue when startup. The UVLO threshold of input rising voltage is set at 2.2V typically with a hysteresis 0.2V.

Soft Start

The RT9365 employs a soft start feature to limit the inrush current. The soft-start circuit prevents the excessive inrush current and input voltage droop. The soft-start clamps the input current over a typical period of $50\mu s$.

Mode Decision

The RT9365 uses a smart mode selection method to decide the working mode for optimizing the efficiency. Mode decision circuit senses the output and LED voltage for up/down selection. The RT9365 automatically switches to x1.5 mode whenever the dropout condition is detected from the current source and returns to x1 mode whenever the dropout condition releases.

LED connection

The RT9365 supports up to 5 white LEDs. The five LEDs are connected from VIN to pin 9, 10, 11, 12, and 13 respectively. If the LED is not used, the LED pin should be connected to VIN directly. Figure 2 shows the connection for 4-WLEDs application, pin 9 is connected to VIN.

Selecting Capacitors

To get the better performance of RT9365, the selection of peripherally appropriate capacitor and value is very important. These capacitors determine some parameters such as input/output ripple voltage, power efficiency and maximum supply current by charge pump. To reduce the input and output ripple effectively, the low ESR ceramic capacitors are recommended. For LED driver applications, the input voltage ripple is more important than output ripple. Input ripple is controlled by input capacitor C_{IN}, increasing the value of input capacitance can further reduce the ripple. Practically, the input voltage ripple depends on the power supply impedance. The flying capacitor C1 and C2 determine the supply current capability of the charge pump to influence the overall efficiency of system. The lower value will improve efficiency, but it will limit the LED's current at low input voltage. For 5 X 20mA load over the entire input range of 2.8 to 5.5V, it is recommended to use a 1uF ceramic capacitor on the flying capacitor C1 & C2.

Brightness Control

The RT9365 implements a pulse dimming method to control the brightness of white LEDs. Users can easily configure the LED current from 1.25mA to 20mA by a serial pulse. The dimming of white LEDs' current can be achieved by applying a pulse signal to the EN pin. There are totally 16 steps of current could be set by users. The detailed operation of brightness dimming is shown in the Figure 3.

Over Voltage Protection

The RT9365 equips over voltage protection function. When LED is open, the voltage between input and output will be clamped at a certain voltage level.

<u>RichTek</u>

<u>RT9365</u>

Layout Consideration

The RT9365 is a high-frequency switched-capacitor converter. Careful PCB layout is necessary. For best performance, place all peripheral components as close to the IC as possible. Place CIN, COUT, CFLY1, and CFLY2 near to VIN, VOUT, CP1, CN1, CP2, CN2, and GND pin respectively. A short connection is highly recommended. The following guidelines should be strictly followed when designing a PCB layout for the RT9365.

1. The exposed pad, PGND, AGND must be soldered to a large ground plane for heat sinking and noise prevention. The through-hole vias located at the exposed pad is connected to ground plane of internal layer.

2. VIN traces should be wide enough to minimize inductance and handle the high currents. The trace running from battery to chip should be placed carefully and shielded strictly.

3. Input and output capacitors must be placed close to the part. The connection between pins and capacitor pads should be copper traces without any through-hole via connection.

4. The flying capacitors must be placed close to the part. The traces running from the pins to the capacitor pads should be as wide as possible. Long traces will also produce large noise radiation caused by the large dv/dt on these pins. Short trace is recommended.

5. All the traces of LED and VIN running from pins to LCM module should be shielded and isolated by ground plane. The shielding prevents the interference of high frequency noise coupled from the charge pump.

6. Output capacitor must be placed between VNG and VOUT to reduce noise coupling from charge pump to LEDs.

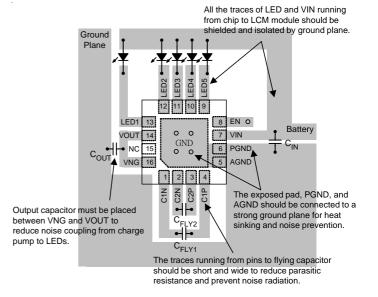
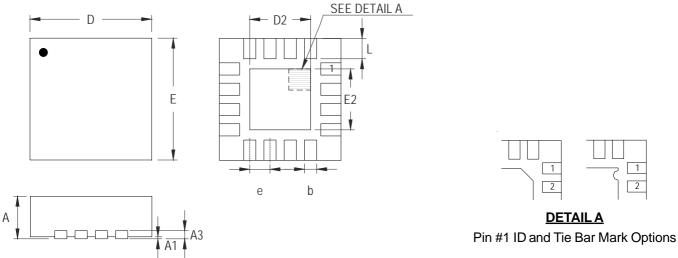



Figure 4

Outline Dimension

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min	Max	Min	Max
А	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A3	0.175	0.250	0.007	0.010
b	0.180	0.300	0.007	0.012
D	2.950	3.050	0.116	0.120
D2	1.300	1.750	0.051	0.069
E	2.950	3.050	0.116	0.120
E2	1.300	1.750	0.051	0.069
е	0.500		0.0)20
L	0.350	0.450	0.014	0.018

W-Type 16L QFN 3x3 Package

RICHTEK TECHNOLOGY CORP.

Headquarter

5F, No. 20, Taiyuen Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789 Fax: (8863)5526611

RICHTEK TECHNOLOGY CORP.

Taipei Office (Marketing) 8F-1, No. 137, Lane 235, Paochiao Road, Hsintien City Taipei County, Taiwan, R.O.C. Tel: (8862)89191466 Fax: (8862)89191465 Email: marketing@richtek.com