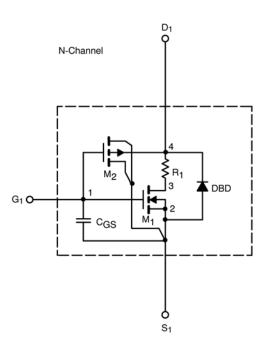


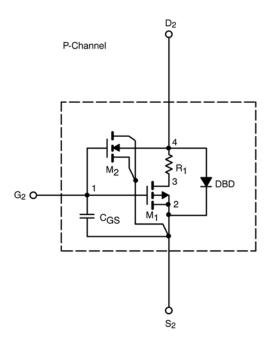
SPICE Device Model Si3586DV Vishay Siliconix

N- and P-Channel 20-V (D-S) MOSFET

CHARACTERISTICS

- N- and P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n- and p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to $125\,^{\circ}\mathrm{C}$ temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

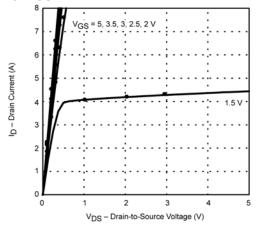
SUBCIRCUIT MODEL SCHEMATIC

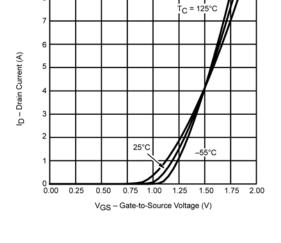
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

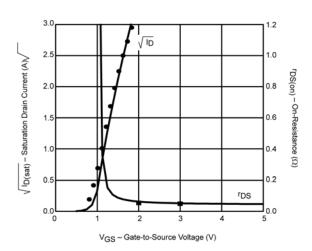
SPICE Device Model Si3586DV

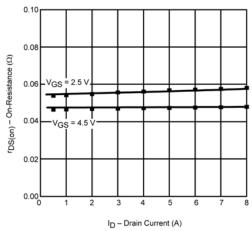
Vishay Siliconix

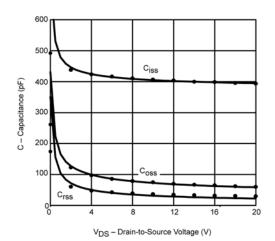
Parameter	Symbol	Test Condition		Simulated Data	Measured Data	Unit
Static				•		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	N-Ch	0.70		٧
		$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	P-Ch	0.78		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS}$ = 4.5 V	N-Ch	111		А
		$V_{DS} \le -5 \text{ V}, V_{GS}$ = -4.5 V	P-Ch	47		
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 4.5 V, I _D = 3.4 A	N-Ch	0.048	0.047	Ω
		V_{GS} = -4.5 V, I_D = -2.5 A	P-Ch	0.088	0.086	
		$V_{GS} = 2.5 \text{ V}, I_D = 3.2 \text{ A}$	N-Ch	0.056	0.054	
		V_{GS} = -2.5 V, I_D = -2 A	P-Ch	0.120	0.116	
		$V_{GS} = -1.8 \text{ V}, I_D = -1 \text{ A}$	P-Ch	0.165	0.170	
Forward Transconductance ^a	g _{fs}	$V_{DS} = 5 \text{ V}, I_{D} = 3.4 \text{ A}$	N-Ch	12	13	S
		$V_{DS} = -5 \text{ V}, I_D = -2.5 \text{ A}$	P-Ch	6.4	6	
Diode Forward Voltage ^a	V _{SD}	$I_S = 1.05 \text{ A}, V_{GS} = 0 \text{ V}$	N-Ch	0.80	0.80	V
		$I_S = -1.05 \text{ A}, V_{GS} = 0 \text{ V}$	P-Ch	-0.78	-0.80	
Dynamic ^b			-			
Total Gate Charge	Q_g	N-Channel $V_{DS}=10~V, V_{GS}=4.5~V, I_D=3.4~A$ P-Channel $V_{DS}=-10~V, V_{GS}=-4.5~V, I_D=-2.5~A$	N-Ch	4.1	4.1	Nc Nc
			P-Ch	4	5	
Gate-Source Charge	Q_{gs}		N-Ch	0.65	0.65	
			P-Ch	0.68	0.68	
Gate-Drain Charge	Q_gd		N-Ch	0.90	0.90	
			P-Ch	0.90	0.90	
Turn-On Delay Time	t _{d(on)}		N-Ch	29	30	
		N-Channel $V_{DD} = 10 \text{ V}, R_{L} = 10 \Omega$ $I_{D} \cong 1 \text{ A. } V_{CEN} = 4.5 \text{ V}, R_{C} = 6 \Omega$	P-Ch	45	28	Ns
Rise Time	t _r		N-Ch	52	52	
			P-Ch	53	55	
Turn-Off Delay Time	$t_{d(off)}$	P-Channel	N-Ch	27	27 25	
		$V_{DD} = -10 \text{ V}, R_{L} = 10 \Omega$ P-Ch	69	55		
Fall Time	t_{f}	$I_D\cong -1$ A, V_{GEN} = -4.5 V, R_G = $6~\Omega$	N-Ch	27	20	
			P-Ch	11	32	

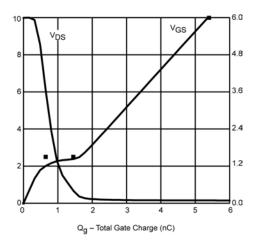

a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2. b. Guaranteed by design, not subject to production testing.

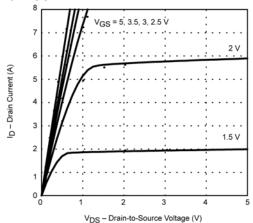


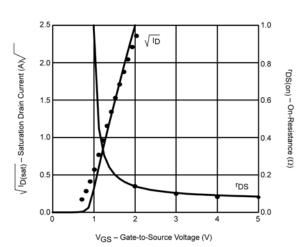

SPICE Device Model Si3586DV Vishay Siliconix

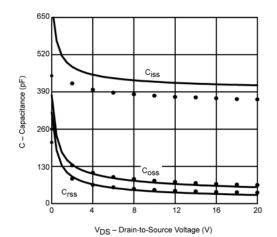

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)


N-Channel MOSFET

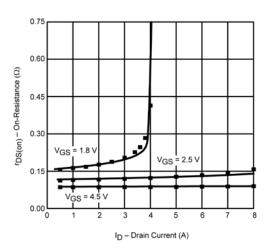


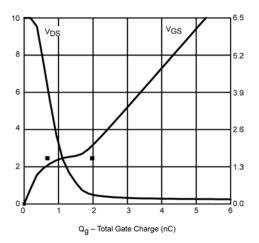

Note: Dots and squares represent measured data


SPICE Device Model Si3586DV


Vishay Siliconix


VISHAY.


P-Channel MOSFET



Note: Dots and squares represent measured data.